首页 > 学习方法 > 高中学习方法 > 高三学习方法 > 高三数学 > 高三数学必背知识点正文

《高三数学必背知识点》

时间:

对于很多高三学生来说,数学无疑也是一个难以攻克的难关,数学总是杂而乱的,学习数学要讲究方法才能在最终考试时看到成效。以下是小编给大家整理的高三数学必背知识点,希望能帮助到大家!

高三数学必背知识点1

a(1)=a,a(n)为公差为r的等差数列

通项公式:

a(n)=a(n-1)+r=a(n-2)+2r=...=a[n-(n-1)]+(n-1)r=a(1)+(n-1)r=a+(n-1)r.

可用归纳法证明。

n=1时,a(1)=a+(1-1)r=a。成立。

假设n=k时,等差数列的通项公式成立。a(k)=a+(k-1)r

则,n=k+1时,a(k+1)=a(k)+r=a+(k-1)r+r=a+[(k+1)-1]r.

通项公式也成立。

因此,由归纳法知,等差数列的通项公式是正确的。

求和公式:

S(n)=a(1)+a(2)+...+a(n)

=a+(a+r)+...+[a+(n-1)r]

=na+r[1+2+...+(n-1)]

=na+n(n-1)r/2

同样,可用归纳法证明求和公式。

a(1)=a,a(n)为公比为r(r不等于0)的等比数列

通项公式:

a(n)=a(n-1)r=a(n-2)r^2=...=a[n-(n-1)]r^(n-1)=a(1)r^(n-1)=ar^(n-1).

可用归纳法证明等比数列的通项公式。

求和公式:

S(n)=a(1)+a(2)+...+a(n)

=a+ar+...+ar^(n-1)

=a[1+r+...+r^(n-1)]

r不等于1时,

S(n)=a[1-r^n]/[1-r]

r=1时,

S(n)=na.

同样,可用归纳法证明求和公式。

高三数学必背知识点2

1.数列的定义、分类与通项公式

(1)数列的定义:

①数列:按照一定顺序排列的一列数.

②数列的项:数列中的每一个数.

(2)数列的分类:

分类标准类型满足条件

项数有穷数列项数有限

无穷数列项数无限

项与项间的大小关系递增数列an+1>an其中n∈N_

递减数列an+1

常数列an+1=an

(3)数列的通项公式:

如果数列{an}的第n项与序号n之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.

2.数列的递推公式

如果已知数列{an}的首项(或前几项),且任一项an与它的前一项an-1(n≥2)(或前几项)间的关系可用一个公式来表示,那么这个公式叫数列的递推公式.

3.对数列概念的理解

(1)数列是按一定“顺序”排列的一列数,一个数列不仅与构成它的“数”有关,而且还与这些“数”的排列顺序有关,这有别于集合中元素的无序性.因此,若组成两个数列的数相同而排列次序不同,那么它们就是不同的两个数列.

(2)数列中的数可以重复出现,而集合中的元素不能重复出现,这也是数列与数集的区别.

4.数列的函数特征

数列是一个定义域为正整数集N_(或它的有限子集{1,2,3,…,n})的特殊函数,数列的通项公式也就是相应的函数解析式,即f(n)=an(n∈N_).

高三数学必背知识点3

1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律--充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力。

2.判定两个平面平行的方法:

(1)根据定义--证明两平面没有公共点;

(2)判定定理--证明一个平面内的两条相交直线都平行于另一个平面;

(3)证明两平面同垂直于一条直线。

3.两个平面平行的主要性质:

(1)由定义知:“两平行平面没有公共点”;

(2)由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平面”;

(3)两个平面平行的性质定理:“如果两个平行平面同时和第三个平面相交,那么它们的交线平行”;

(4)一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面;

(5)夹在两个平行平面间的平行线段相等;

(6)经过平面外一点只有一个平面和已知平面平行。

高三数学必背知识点相关文章