首页 > 实用范文 > 毕业论文 > 论文范文 > 混凝土的结构设计研究论文(精选14篇)正文

《混凝土的结构设计研究论文(精选14篇)》

时间:

建筑抗震设计探讨性论文3篇

建筑结构抗震设计讨论论文 1

关于建筑结构抗震设计讨论论文

【摘要】近年来,人们对建筑的安全性与质量标准越来越高,而建筑行业技术通过不断革新,技术水平不断提升,使得建筑工程质量已得到大幅提升。通过总结近二十年地震易发区及已发区的建筑结构设计特征与效果,总结出本文,做出了建筑结构抗震设计的四大思想理念,并提出了几项重要的针对建筑结构抗震设计的措施。

【关键词】建筑结构;抗震;设计;问题

建筑行业发展步伐紧紧跟随着城镇化发展愈来愈快的脚步。受到不同区域限制,及自然灾害的产生,使得建筑结构抗震设计成为建筑设计中一项不得或缺的设计任务,从保证建筑的安全性出发,为人身安全做出了保障。那么如何对建筑结构的抗震效果做出合理设计,需要考虑到什么?对抗震设计需要采取什么具体措施?本文将对以上问题进行探讨与解决。

1.建筑结构抗震设计的思想

1.1与不利区域相互避开

施工选区对建筑结构抗震能力有着至关重要的影响。再好的设计更需要有一个好的根基,建筑物的构建,需要避开地质状况不佳、地震低发区域,从而从根基上保证建筑地基能够坚实稳固。当地震灾害发生时,直接破坏的是建筑结构。如有特殊情况,无法避开不利建筑区域,这时必须使用特殊方式适当解决对应问题,并在建筑结构的构建设计上,需要对抗震能力大幅提升。所以选择一个最佳建筑建设区域,能够从根本上提高抗震性能。

1.2建筑外形设计

根据统计得出,建筑构件截面及平立面更容易突变,发生地震应力,引发地震灾害。当今时代,许多建筑设计师更注重通过建筑外形的设计稳定抗震性,设计师清楚地明白:①建筑设计注重整体性。建筑的整体性强,才能保持“传力通道”通畅,保证抗震能力强;②建筑结构遵循规则性。建筑结构不规则时,需要通过加倍地震产生的作用力与内力来重新计算建筑受力,调整设计;③设计方案的重要性。方案是否合理,直接影响着整个工程的耗材与建筑的安全性。

1.3协调设计

如何把控建筑结构的抗震效果?不仅需要的是对平立面设计的规则与对称,更需要的是建筑构造设计师与建筑工程工程师之间的协调与配合。建筑构造设计师与建筑工程工程师不仅要各司其职地完成设计与分析工作,还需要通过沟通交流,完成配合,对建筑结构的抗震设计进行调整,最终达到建筑结构规则要求与抗震设计标准。

1.4确定结构体系

当确定建筑结构后,需要选择并确定合适的结构体系。建筑结构体系的选择与确定,抗震设计中的建筑实际条件(建筑区域地质、地基深浅、建筑材料、建筑高度等)、抗震类别等决定了建筑结构体系的选择,再通过各体系间经济、技术等对比,可确定最终的建筑结构体系。确定结构体系对抗震整体分析有着不可替代的重要作用。拥有地震传递与作用途径、计算简图,能够把控地震的作用力并分析出作用力的传递方向,达到预防地震来袭并在一定程度地避免了对建筑物迫害的作用。

2.建筑结构抗震构造的关键措施

要提升建筑结构的`抗震效果,必须要采取一定的构建措施。本文介绍了:设置防震缝、增设构造柱、设置圈梁三种防控地震的构建建筑的措施。具体措施介绍如下。

2.1设置防震缝

在抗震地区,建筑物立面高差≥6m、建筑物有错层、楼板间错层高度差很大、或是建筑物各组件间硬度或重量差距过大时,需要设置防震缝。防震缝的作用就是将建筑整体划分成若干个体单元,使这些个体单元的刚度以及重量均匀,从而降低地震对建筑物的破坏程度。防震缝一般设置于地基之上,宽度基本在50~100mm内取值。

2.2设置构造柱

为增强抗震能力,加强建筑材料强度与剐度分别在建筑物拐角、墙根部、隔断、高墙体中部、楼梯以及电梯间等位置设置构造柱,并通过圈梁、构造柱与墙体三体之间紧密相连构造出稳固的空间骨架,大大提高了建筑物强度及稳定性,也对墙体的应变能力得以提升,使建造出的建筑物达到“裂而不倒”的高标准要求。建筑施工过程中需要按照“砌墙→逐段柱身”的顺序来进行工程搭建,在柱身过程中需要现浇钢筋混凝土,使之更加坚固,在构造柱时,要做好根基,在柱下固定钢筋混凝土,保证其根基稳定,柱的截面应≥180mm×240mm,主筋采用一般规格:4×412mm,箍筋间距应≤250mm,墙柱间沿墙高每≤250mm增设4×46mm的钢筋加以连结(嵌于墙内钢筋需≥1m)。

2.3设量圈梁

需要圈梁来配合楼板进行搭建是提高建筑物空间的刚度,加强空间整体性,巩固墙体稳定性,减少开裂情况,提高抗震能力的必要措施。圈梁的材料有两种可以选择:钢筋砖与钢筋混凝土。钢筋砖圈梁用于地震低发区的非抗震区域;钢筋混凝土则相反用于抗震地区,它的宽度基本和墙体厚度相当,高一般≥120mm,其最小横截面为240mm×120mm。抗震地区建筑建设中圈梁务必完全闭合,保证不能被洞口截断。

3.结语

建筑结构的抗震设计的优劣,是衡量工程质量的重要因� 建筑结构的抗震设计直接影响的是建筑寿命,而间接影响的是建筑承纳人员的生命安全以及建筑单位的经济效益。所以,建筑结构抗震设计的整体思想必须遵循:避开不利区域选择合理的建筑建设地区(了解建筑施工地区的实地情况)、进行全方面合理设计(工程人员与设计人员的协调设计、建筑外形设计)、通过总结与对比选定合适的结构体系,结合最佳抗震技术,把握建筑建设过程中抗震的重点措施。根据上述设计思想,才能够完全保障建筑结构的抗震效果。

参考文献

[1]王秀丽.多层钢框架梁柱连接节点抗震性能研究[D].哈尔滨:哈尔滨工业大学,.

[2]钱俊,张大圣,冯俊等。浅谈建筑结构工程中抗震技术分析[J].城市建设理论研究:电子版,(20):65.

[3]万利超,蒋丽平.结构抗震技术在建筑工程中的应用分析[J].城市建设理论研究:电子版,(32):38-40.

结构抗震概念设计论文 2

结构抗震概念设计论文

一、结构抗震概念设计的提出原因及必要性

每栋建筑物都是一个空间结构体,在荷载作用下各构件并非是以脱离体系的单一构件独自工作,而是以相当复杂的方式共同工作,精确计算其作用和受力是相当困难的,在计算地震作用时尤其如此,由于地震作用下的结构构件受力状态的复杂性及不确定性、人们对地震时结构响应认识的局限性和模糊性、理论计算中的假定与实际情况的差异性,注定了在现阶段无论计算工具再如何发展,计算过程再如何严格,其结果也只能是一种比较粗略的估计,甚至有时还根本无法计算。

显然在结构设计中,仅依靠现有理论进行抗震计算往往不能满足结构安全性、可靠性的要求,无法达到预期的设计目标。因此在不确定因素众多,受力状况复杂的结构抗震设计中,抗震概念设计的提出和应用就显得尤为重要了。

二、结构抗震概念设计的涵义

所谓抗震概念设计,一般是指不经过计算,尤其在难以做出精确理性分析或在规范中难以规定的问题中,依据整体结构体系与分结构体系之间的力学关系、结构破坏机理、震害、实验现象和工程经验中所获得的基本设计原则和设计思想,从总体的角度来进行建筑结构的总体布置和抗震细部措施的宏观控制,从而从根本上保证结构的抗震性能。

三、结构抗震概念设计的基本原则和具体要求

(一)建筑场地的选择

地震造成建筑的破坏,除地震动直接引起结构破坏以外,还有场地条件的原因,诸如:地震引起的地表错动与地裂,地基土的不均匀沉陷、滑坡和土体液化等。因此选择有利于抗震的建筑场地是减轻建筑物地震灾害的第一道重要工序。

(二)建筑物的平面、立面及竖向剖面的布置建筑物平面和立面的规则性是抗震概念设计中需要考虑的一个重要因素。

规则的建筑方案体现在:建筑物的平面布置基本对称;结构体型简单;抗侧力体系的刚度和承载力上下变化连续、均匀。因为,简单、对称的结构容易估算其在地震时的反应,容易有针对性的采取抗震措施并对其进行细部处理。因此,这就要求建筑专业的设计人员具有一定的抗震知识素养,应该对所设计的建筑的抗震性能有所估计,避免采用抗震性能差的严重不规则的设计方案。

(三)结构体系的确定和结构布置

结构体系的。确定是结构设计中头等重要的大事。结构设计时应通过综合分析使结构体系尽量合理且经济,应优先采用抗震能力强、延性好、耗能能力强、便于施工且具有多道防线的结构体系(如框架-剪力墙结构,框架-筒体结构,设置耗能连梁的剪力墙结构等),避免采用抗震能力较低的结构体系(如板柱-剪力墙结构,单跨框架结构等),尤其应避免采用看似“合法”(符合规范)但不合理的结构体系(如当房屋高度接近规范框架结构类适用高度上限时,仍采用框架结构,震害表明,框架结构的侧向刚度较小,整体性较差,结构的抗震性能较差,此情况下应采用抗震性能较好的框架-剪力墙结构为宜)。

而在结构布置时,应采用概念清晰、传力途径明确的布置方式,尽量避免造成结构扭转、平面和立面的里出外进、竖向传力杆件的间断与不连续等问题。

(四)多道抗震防线的设置

单一结构体系只有一道抗震防线,一旦破坏就会造成建筑物倒塌的严重后果。特别是当建筑物的自振周期与地震动卓越周期相近时,建筑物由此而发生的共振,更加速其倒塌进程。而如果建筑物采用的是多重抗侧力体系时,第一道防线的抗侧力构件在 当第一道抗侧力防线因共振而破坏,第二道防线接替工作,建筑物自振周期将出现较大幅度的变动,与地震动卓越周期错开,使建筑物的共振现象得以缓解,避免再度严重破坏。在双重结构体系中一般应优先选择不负担或少负担重力荷载的竖向支撑或填充墙,或轴压比值较小的抗震墙、实墙筒体等构件作为第一道防线的抗侧力构件,如框架-剪力墙结构中的剪力墙,框架-填充墙结构中的填充墙,单层厂房纵向体系中的柱间支撑,均可作为各自体系中的第一道抗震防线。如因条件限制,只能采用单一的框架体系,则框架就成为整个体系中唯一的抗侧力构件,此时应采用“强柱弱梁”型的延性框架。

在地震作用下,框架梁成为第一道抗震防线,框架柱为第二道抗震防线,用框架梁的变形去消耗地震能量,使框架梁的屈服先于框架柱的屈服,从而保护了框架柱的相对完整,最终达到“大震不倒”的要求。

(五)结构抗震设计关键点的把握

在结构抗震概念设计中,还应注重对结构体系中的关键部位(如薄弱层,加强层等)、关键部位中的关键构件(如加强层的重要竖向构件、转换层的水平转换构件等)、关键构件中的关键节点(如梁柱节点,柱根部位等)几个关键点的把握,从而实现“强柱弱梁、强剪弱弯、强节点强锚固、强柱根弱杆件”的设计理念。

结构抗震概念设计不是拒绝进行复杂结构设计,而是要求在处理复杂结构设计时明确:什么是结构设计的最佳选择?采用不合理的结构方案或结构布置可能会带来什么样的后果?需要采取哪些补救或加强措施,并对这些措施的合理性和有效性做出客观的评价,以保证结构性能目标的实现,确保房屋安全。结构抗震概念设计不是指手画脚的空洞说教,而是具有丰富内涵的实实在在的工作。

多层砌体房屋抗震加固方法述评 3

多层砌体房屋抗震加固方法述评

本文讨论了多层砌体房屋抗震加固的原则,对目前常用的多层砌体房屋的。加固方法进行了简要的论述,提出了各种方法的特点和适用范围以及需要注意的问题,并指出了将来可能的发展方向。

作 者:林玮 李巨文 Lin Wei Li Juwen  作者单位:防灾科技学院,河北,三河,065201 刊 名:地震工程与工程振动  ISTIC PKU英文刊名:EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION 年,卷(期): 26(6) 分类号:P315.958 关键词:抗震加固   多层砌体房屋   方法

高层建筑结构设计方式研究论文 4

2.1注重高层建筑的结构性能设计

高层建筑的结构性能设计是高层建筑结构抗震设计的关键。在城市化的快速发展下,人们对建筑的使用需求提升,高层建筑结构设计目标不仅仅是要保证人们的安全,而且还需要注重控制高层建筑物的地震破坏,提升高层建筑的抗震性能。为了提升高层建筑的抗震性能,在高层建筑结构设计的时候需要有关人员加强对地震标准下建筑构件变形问题、承载力问题、局部构造问题得到分析,全面提升高层建筑构建的变形条件、承载力等。另外,在加强高层建筑结构设计的时候需要对抗侧力构件位置的科学确定,从而保证高层建筑承载力的科学、合理分布。为了进一步提升高层建筑的稳定性,还需要有关人员采取措施提升构建的强度、刚度。

2.2选择合理的高层建筑结构设计方案

高层建筑结构设计方案的选择需要考虑多重因素,包括:①结构的选型需要满足高层建筑各个功能的实现。比如为了提升高层建筑的视觉和传音效果,在进行结构设计安排的时候需要放弃一部分的竖向支撑构建,加强对大跨度结构的应用;②在高层建筑结构设计的时候需要通过防震缝的设计形成一定规则的结构单元;③需要有关施工人员根据高层建筑所在的地区情况对施工地下水位变化、地址土层、周围建筑物、建筑材料选择、工程造价等问题进行综合的权衡考虑;④需要加强对建筑结构的延展性设计;⑤加强对高层建筑结构水平力的关注;⑥保证高层建筑结构设计的规则性。高层建筑结构设对规则性有着很高的要求,比如结构嵌固端上层和下层的刚度比、平面规则问题等。为在高层建筑结构设计之后不出现后期施工改动的情况,在高层建筑结构设计的时候需要严格按照相关的规范条件进行施工。

2.3对建筑的扭转问题进行优化设计

对建筑的扭转问题进行优化设计能够减少地震、风荷载等问题对高层建筑结构设计的影响。为此,在高层建筑结构设计中需要有关人员选择适当的建筑结构安排布局,实现建筑物的“三心”合一。根据一些城市规划发展要求和建筑物场地的限制,高层建筑结构设计不能采取简单的模式,而是需要根据实际需要采用不同的模式,比如I型模式、T型模式等,将建筑结构设计凸出的位置限定在合理、允许的范围内。

2.4加强高层建筑结构的包络设计

包络设计是近年来比较常见的设计方式,可以有效解决工程项目结构设计中存在的各种问题。当前工程设计问题变化比较多,有许多因素都会影响到结构效应,各种问题盘根错节,使用目前已经掌握的只是或者软件很难对其进行准确的分析。学术科学和工程的不同点在于后者难以长时间等待。因此要通过优化结构设计的形式,利用最少的经济投入来获取最大的经济效益,并解决工程项目存在的问题。不同的工程条件可以用不同的网络设计原则来处理,在对待转换结构转换层或者连体结构时,也可以用网络设计,对构件进行分析验算,取不利值包络设计。

3结束语

综上所述,随着社会经济发展进步,高层建筑成为城市发展的重要标志。为了提升高层建筑结构设计的安全性、稳定性,需要有关人员认识到综合性、技术性很强的高层建筑结构设计工作对于建筑设计的重要作用和意义,加强对高层建筑结构设计的分析,应用多种技术,结合高层建筑结构特点,遵循相应的高层建筑结构设计原则,从而设计出符合社会发展需要的高层建筑结构。

参考文献:

[1]王宇。超高层建筑结构健康监测系统研究与设计[D].哈尔滨工业大学,.

[2]蔡静敏。某超限高层建筑结构抗震超限设计与分析[D].华南理工大学,2013

[3]赵东晓。高层建筑结构设计的问题与对策研究[J].商品混凝土,(9):132-133.

[4]岳文萍,周强茂,刘飞飞。高层建筑结构设计的问题及对策探讨[J].住宅与房地产,(3):90-91.

抗震鉴定建筑论文 5

3.1抗震鉴定原则

本工程属于B类建筑,应进行两级鉴定。

(1)第一级鉴定对现有房屋的宏观控制和构造鉴定为主进行综合评价;

(2)第二级鉴定:对现有房屋进行抗震验算为主结合构造影响进行综合评价。(1)和(2)同时满足的建筑评定为满足抗震要求,可不进行加固处理;(1)满足而主要抗侧力构件的抗震承载力不低于规定的95%、次要抗侧力构件的抗震承载力不低于规定的。90%,可不进行加固处理;(1)不满足而抗震承载力较高时,可通过构造影响系数进行综合抗震能力的评定;(1)和(2)均不满足要求时,应采取加固或其他相应措施。

3.2抗震等级确定

本工程使用功能为病房楼,根据《建筑工程抗震设防分类标准》第4.0.3条,二三级医院的门诊、医技、住院用房,抗震设防类别应划分为重点设防类(乙类)。依据现行《建筑抗震设计规范》第6.1.2条规定,本楼框架抗震等级为二级、剪力墙抗震等级为一级。依据现行《建筑抗震鉴定标准》第6.3.1条规定,框架抗震等级为三级、剪力墙抗震等级为二级。改造工程的抗震设防目标及抗震设防水准,按照安全、经济、合理的要求,结合其后续使用年限40年相协调,确定框架抗震等级为三级、剪力墙抗震等级为二级。

3.3场地、地基和基础

查阅原地勘报告,本楼建造于对抗震有利的地段,场地类别为II类,其地基主要受力范围内不存在软弱土、饱和砂土和饱和粉土或严重不均匀土层。依据《建筑抗震鉴定标准》第4.1条、4.2条规定,可不进行场地对建筑影响的抗震鉴定,同时也可不进行地基基础的抗震鉴定。

3.4抗震措施鉴定(第一级鉴定)

3.4.1结构高度

本工程结构总高26.90m,满足《建筑抗震鉴定标准》第6.1.1条,7度框架-抗震墙结构适用的最大高度为120m的要求。

3.4.2房屋的结构体系

本工程为双向多跨框架-抗震墙结构,结构布置及框架梁、柱、剪力墙截面满足《建筑抗震鉴定标准》第6.3.2条房屋结构体系要求。本工程建筑平面形状为矩形,平面没有局部突出,立面没有局部缩进,均满足《建筑抗震鉴定标准》第6.2.1条房屋结构体系要求。楼层刚度大于其相邻上层刚度的70%,且连续3层总的刚度降低小于50%,满足《建筑抗震鉴定标准》第6.2.1条房屋结构体系要求。首层个别框架柱轴压比为0.98,不满足《建筑抗震鉴定标准》第6.2.1条框架-抗震墙柱(抗震等级三级)轴压比≤0.95的要求。

3.4.3混凝土强度等级

本工程混凝土强度实测结果,满足《建筑抗震鉴定标准》第6.3.3条梁、柱、墙实际达到的混凝土强度等级不应低于C20要求。

3.4.4框架梁的配筋及构造

本工程框架梁纵向受拉钢筋的配筋率不大于2.5%;梁端截面的底面和顶面配筋量的比值不小于0.3;梁端箍筋实际加密区的长度大于梁截面高度的1.5倍,箍筋最小直径为8mm,满足要求。

3.4.5框架柱的配筋及构造

本工程框架柱实际纵向钢筋的总配筋率,框架中柱、边柱和角柱均大于1.0%,满足要求。柱箍筋加密区的箍筋间距为100mm,箍筋直径为φ8mm和φ10mm,满足要求。柱加密区箍筋肢距不大于200mm,且每隔1根纵向钢筋在2个方向均有箍筋约束,满足要求。

3.4.6框架节点核心区构造

本工程框架节点核心区内箍筋最大间距为100mm,最小直径为φ12mm,柱体积配箍率为1.6%~2.1%,满足《建筑抗震鉴定标准》第6.3.6条要求。

3.4.7抗震墙的配筋及构造

本工程抗震墙墙板竖向、横向分布钢筋的配筋率约为0.628%,均大于0.25%,最大间距为150mm,最小直径φ12mm,满足要求。抗震墙边缘构件的配筋,纵向钢筋配筋率为1.2%~2.0%,箍筋直径均为φ10mm,间距均为100mm,满足《建筑抗震鉴定标准》第6.3.7条要求。

3.4.8填充墙

本工程砌体填充墙在平面和竖向布置均匀对称,满足要求。砌体填充墙沿框架柱每隔500mm有2根φ6mm拉筋,拉筋伸入填充墙内长度700mm,满足三四级框架不应小于墙长的1/5且不小于700mm的要求。墙长度大于5m时,墙顶部与梁设有拉结措施,满足《建筑抗震鉴定标准》第6.3.9条要求。

3.5抗震承载力验算(第二级鉴定)

第二级鉴定是以抗震验算为主,结合构造影响进行综合评价。第二级鉴定可采用楼层综合抗震能力指数法与《建筑抗震设计规范》规定方法进行抗震计算分析。本工程采用中国建筑科学研究院编制的《PKPM混凝土结构鉴定加固》软件进行抗震承载力计算。在建立计算模型和选择计算方法时采取了如下处理。

1)在PKPM软件计算中,依据原设计施工图、本次改造建筑图,并结合现场调查结果,确定结构布置及荷载分布,建立计算空间计算模型

2)抗震计算的有关参数抗震设防烈度:7度;设计基本地震加速:0.15g;设计地震分组:第一组;设计特征周期值:0.30s;建筑场地类别:II类;地面粗糙类别:C类;框架抗震等级:三级;剪力墙抗震等级:二级。

3)梁柱节点重合部分,梁端简化为刚域。

4)考虑填充墙对于结构总体刚度的影响,计算时取周期折减系数为0.75。

5)根据第一级鉴定结果,体系影响系数取0.95。经计算首层个别框架柱抗剪不满足要求,首层、2层部分框架梁、板承载力不满足要求,3层、5层�

3.6抗震鉴定结论

1)个别框架柱轴压比不满足要求;

2)个别框架柱抗剪不满足要求;

3)部分框架梁承载力不满足要求;

4)部分楼板承载力不满足要求。

4抗震加固设计

4.1框架柱加固

轴压比不足的框架柱采用加大截面法进行加固处理。该方法是在框架柱构件表面凿毛和清洁处理后用钢筋混凝土围套,围套内的纵向受力钢筋由计算确定,并与原框架柱内纵向受力钢筋共同工作。采用加大截面法不仅提高框架柱的承载力,并且在一定程度上提高了结构的刚度。加大截面的尺寸一般在100mm左右,采用混凝土加大截面,浇筑时很难振捣密实,加固质量难以保证。本工程采用高强灌浆料代替混凝土,保证了混凝土的密实度。抗剪承载力不足的框架柱采用横向粘贴碳纤维的方法进行加固处理。框架柱粘贴环向碳纤维箍,缠绕3圈且搭接长度应超过200mm。碳纤维箍外侧抹厚度不小于25mm的高强度水泥砂浆,以满足防火及防护要求。框架柱顶部及底部设置4mm厚钢板封闭箍进行附加锚固。

4.2混凝土梁加固

混凝土梁采用型钢加固法。此方法适用于不允许增大构件截面尺寸,而又需要大幅度地提高承载力的混凝土结构加固。型钢加固法是在混凝土构件四周包以型钢,型钢与被加固梁之间用聚合物砂浆或结构胶等方法黏结。型钢表面抹厚度不小于25mm的高强度水泥砂浆(应加钢丝网防裂)作防护层,具体做法

4.3楼板加固

楼板采用粘贴碳纤维加固法。碳纤维复合材加固混凝土结构,主要是利用纤维抗拉的高强度、高弹性模量、高应变性能及利用改性环氧树脂类胶结材料,使碳纤维与混凝土结构产生良好的黏结性,加固补强原结构受拉纵向钢筋和受剪、抗扭箍筋的不足,从而提高结构抗弯、抗剪、抗扭承载力。该方法用高性能黏结剂将碳纤维布黏贴在楼板表面(纤维粘贴方向应平行于构件的主受力方向),使两者共同工作,提高楼板的抗弯承载力。为提高碳纤维布黏结加固耐久性,碳纤维表面采用压结钢片加射钉进行附加锚固,压结钢片长度宜为碳纤维布宽+60mm,射钉应不打穿碳纤维布。

5结语

1)抗震鉴定应根据结构形式、后续使用年限等因素,结合现场实测数据,采用逐级鉴定的方法,进行抗震性能分析。

2)抗震加固应综合分析建筑整体情况、现场检测结果、抗震鉴定结果,并结合建筑物的现状等,选择经济、合理、施工方便的加固方案。

设计高层混凝土住宅建筑抗震毕业论文 6

关于高层混凝土住宅建筑抗震结构设计,应该持续改进高层混凝土住宅结构的延展性,达到合理的刚度和强度要求,提升高层混凝土住宅建筑抗震结构的抗震能力。

2高层混凝土建筑抗震结构设计对策

2.1场地和地基的选择

关于高层建筑的抗震效果,地基的情况和场地状况较会产生直接的作用, 如何选择地基和场地,一定要详细清楚当地的地震活动状况,仔细勘查地质情况,并获取全方位的数据资料,从而可以有效的进行综合评价和研究,正确的评判当地的抗震设计等级。采用一切办法去规避不利于抗震设计的地方,如果不能规避的场地,我们要做针对性的处理。在选择高层建筑地基时,首选的是较高密实度的基土和岩石,将有利于提升建筑地基的抗震能力,切勿采用哪些不适合抗震的软性地基土。务必要采用合理的措施对达不到地震需求的地基进行改善和加固,从而让它满足抗震要求。

2.2建筑结构的规则性

为了实现可靠性的建筑,达到合理分布承载的力量需要,在设计建筑结构时,务必要达到建筑结构的规则性需要,尽量让抗侧力结构可以简单明了。对于建筑结构平面布置图,多选用比较规整的图形,主要是由于规则的图形能够确保建筑遇到何种情况时都能实现均匀分布的承载力。应该尽量规避一些复杂多变的。建筑结构平面,那是由于不规则的图形便于引起建筑结构的钢心和质心间的错乱不堪。如果遭遇地震,钢心距离就会变大,刚性达不到要求,从而使得建筑物出现倒塌的结果。

2.3建筑结构材料的选取

高层建筑在遭遇地震时安全性能很大程度上都由于建筑结构材料来决定。现实中,高层建筑抗震结构设计的本质问题就是整合相应构件的延性,同时要做调和工作,最终目标是确保遭遇地震时建筑能够稳定安全。而对于钢筋来说,应该选择那些具备较好韧性的材料。关于垂直方向受力的钢筋,以HRB335级、HRB400级的热轧钢筋为准,箍筋则是采用热轧钢筋,型号为HPB235、HRB335、HRB40级。在选用建筑结构材料时,务必要充分了解材料抗震的要求。同时,还要考虑其中的造价和成本控制问题。所以说,选用建筑结构材料应该寻求抗震新性能和建筑成本平衡点,只有两者的协调统一,才能确保用最少的材料实现最好的抗震能力。

2.4隔震和消能减震设计

某些高层建筑需要非常严格的抗震要求,要满足一般的抗震效果,还必须实现消能、隔振的效果。所以,要达到上述目标,第一,正确选择地基和场地,首选那些较高密实度的地基,这样可以避免发生轻地震时其能量对建筑产生的损害,减少共振发生几率。建筑物不同,其隔振系数也是不一样的。所以说,在设计建筑结构的过程中,务必要根据实际情况来详细研究,选取适宜的隔震支座,还要综合分析风力产生的负荷作用。那些具有消能、隔振要求的建筑构件,延性好的材料是比较适合的,强度能够满足要求,能够确保建筑物受地震时减弱破坏。

2.5抗侧力体形的优化

在一般性构造的高楼中,刚超过柔,那些刚性结构方案的高楼,主体结构遭遇的损害少,如果发生地震时其结构变形也不大,围护墙、隔墙等非结构部件也会破坏较少,受到较好的保护。结构的超静定次数也会增强,遭遇地震时的塑性铰变大,耗费较多的地震能量。结构也会在强地震情况下更加具有承受力,而不至于倾倒。改观结构屈服机制,并确保结构出现损害时依据整体屈服机制工作,并不依靠楼层屈服机制。设计结构的原则是强压弱拉、强剪弱弯、强柱弱梁和强节弱杆。设计结构理应选择轴力小的水平杆件,成为关键的耗能杆件,尽量的产生弯曲耗能,确保实现构件的较强的耗能能力和不小的延性。

2.6常用的加固设计

要想能够较好的提升建筑结构的抗震能力,加固措施务必要结合建筑结构现实状况进行,选用加固方法务必要综合如下因素全面分析:如果结构设计出现误差和缺陷,就要结合现实问题来加固和增加构件,也可以采用较高抗震能力的构件作为替代品。如要提高整体刚度和承载力,可通过设置套箍、增大原截面和增加构件的方法来实现。多数建筑结构整体性连接不满足抗震的规范要求,应该有目的地调整结构,可以降低损害,分散地震力。为避免发生地震时引起破坏,应该对于那些同建筑结构无关紧要的构件进行加固处理。

3结语

依据现在抗震设计要求,高层建筑抗震结构设计应该提升设备和结构的关系,设计者要结合建筑工程抗震概念的相关知识,并融合自己的实践经验来正确判断,找到经济效果好、结构安全的平衡点,寻求方便易做的三步、二步设防的科学抗震设计方法,从而适应科技和经济的快速进步,达到人们的需要。

高层建筑混凝土转换层结构设计探讨论文 7

高层建筑混凝土转换层结构设计探讨论文

摘要:转换层主要是为了满足高层建筑结构中建筑功能的要求而设计的,转换层起的是过渡的作用,不仅如此,转换层对建筑的安全性与稳定性也会产生影响。所以,如果不做好不同结构间的转换,无法合理运用转换层的话,将造成不可估量的后果。为了确保结构的安全性与经济性,提高建筑物的使用功能,就必须做好不同结构体系之间的转换。本文将通过一个实例来展现高层建筑峻宁图转换层结构的基本特点,重点探讨转换层结构设计要点,并且对相关要点提出改进建议,为以后的转换层结构研究打下基础。

关键词:高层建筑;转换层;结构设计;特点;应用

1引言

随着生活水平的提高,城市化建设步伐的加快,人们对于高层建筑的功能需求也悄然发生着改变,为了迎合市民的需求,建筑物功能区也发生了改变,不再是单一的、片面的、枯燥的。最为常见的建筑物结构形式是民用住宅,功能区的划分是由住宅与公共场所通过墙体、柱网来进行的,然后满足每个功能区的使用要求。在这一过程中就运用了转换层,因为只有转换层的存在才能完成这些结构变化,从而完成功能区的划分。其实在高层建筑混凝土结构设计中,为了保证建筑物的使用性能,需要把建筑物分为两种空间:①大空间;②小空间,这样的空间设置就导致了上半部分的楼层竖向构件无法接触到地面,这个时候就要有转换层的存在了。

2工程概况

某高层商业住宅楼,地下有两层,地面以上有28层,其中一、二、三层为大型商场,4~28层为住宅。地下室两层总高度为4.5m,商场有部分楼层高度为4.5m,住宅楼层与商场一样,不是所有楼层都是一个高度,部分住宅楼层高度为2.9m。整栋楼的结构体系除了电梯间、楼梯间可以一样之外,其他的都必须是不同的结构体系,其中电梯间和楼梯间采用的是剪力墙核心简结构。由此可以看出,由于结构体系的不同,那么转换层也就派上了用场,转换层的使用使得两种结构体系完美过渡,所以将转换层设置在三层定顶,恰好是商场和住宅楼层间的过渡。

3转换层结构特点

从高层建筑混凝土转换层结构发展过程来看,转换层结构的特点主要有以下三点的特征:①对于建筑物的荷载来说,为了保证建筑物的承受力,支承柱与大梁的连接处会有集中的应力,如果不及时解决,会大大降低抗震的效果,所以就必须采取措施改善结构构造的抗震性能。②来自于上部竖向受力构件的荷载几乎都由转换层的大梁承受,大大增加了大梁的内力,同样的,必须及时解决,在结构设计中合理的布置结构荷载,达到降低大梁内力的'目的。③一般情况下,转换层空间的设置都是高且大的,目的是确保转换层的刚度,但是这样大梁的截面尺寸也会随之增大,也就产生了转换层的使用空间不够大的情况。

4转换层结构设计要点

4.1转换层结构设计原则

在建筑物中设置转换层的时候,有可能会发生结构抗震能力下降的情况,因为在设置的时候,转换层竖向刚度可能会突然发生改变。所 (1)在转换层结构设计的时候,很有可能出现因为竖向刚度突然发生变化而形成薄弱层的情况,因此要在设计的时候充分考虑到上、下两层的刚度,将上、下层的刚度比尽量控制在1~2的范围内,这样不仅能有效避免薄弱曾的形成,还保证了上层柱子的抗侧性能,也使整体结构的受力比较均匀。上、下层刚度比的计算公式为:其中Gi+1表示的是第i+1层混凝土剪变模量,Gi表示的是第i层混凝土剪变模量;Ai+1表示第i+1层折算抗剪截面面积,Ai则表示第i层折算抗剪截面面积;hi+1表示的是第i+1层的层高,hi同上,第i层的层高;而A=Aw+0.12Ac。(2)在转换层结构设计的过程中,需要特别注意的是转换层的刚度一定要满足规定的数值要求,从一般规定来看,转换层的梁的高度是大于梁跨度的1/6,目的是使结构内力能准确的作用于转换层下部。另外,由于转换层结构构件中梁、柱的受力性能比较好,所以需要合理分配结构构件,为建筑结构转换提供便利。

4.2结构选型

针对本工程如果从转换层的材料去考虑的话,分为三种:①厚板转换层;②箱形转换层;③梁式转换层。而厚板转换层无论是从施工难度还是在成本上都处于劣势,因为如果混凝土和板材的用量较多的话,无疑增加了施工难度,同时过多使用材料也增加了成本投入。从结构受力上来看,厚板转换层结构受力比较复杂,计算难度大,计算过程也随之复杂,在无形中增加了工作量。相对的,如果采用箱形转换层的话,也是有优点有缺点。从结构上来说,结构具有比较好的整体性,对竖向构件的传力也做到了保证,但是在结构设计上就会出现问题,因为箱形转换层这种结构本身的内力分析就比较复杂,再者,目前这方面的技术也不是太成熟,所以在设计和施工上都有较大难度。梁式转换层相较于前两种转换层不仅设计和施工难度较小,竖向构件传力路径也很清晰,最重要的是既合理又经济。

4.3结构概念设计

在对整体结构概念进行设计的时候,需要注意以下三点:①加强底部框支层的刚度。依据前文提到的设计原则,应该在对抗震性能进行设计的时候把转换层上下结构侧向刚度比控制在2以内。而且在设计的时候还要考虑到核心筒的位置,一般情况下核心筒位置北面的刚度都比较大,所以为了使刚心和质心重合,需要在核心筒底部靠南的位置设立短肢剪力墙,达到提高底部刚度,控制刚度比值的目的。②加强转换层楼板的刚度,增强水平荷载传递的可靠性。为了增加结构的整体性,楼板设计厚度为180mm,并且采用双层双向配筋的方式,将配筋率控制在0.25%。③为了大幅度降低转换梁的梁高和弯矩,可以在框支柱上设置短肢剪力墙。

4.4构造措施

构造措施的出现是为了满足抗震设防的需求,措施分为三种:①针对框支梁的上部墙体开门洞附近剪力较大的情况,解决办法是加密配箍,如果洞口靠近梁端的话,就要采取梁端加腋的方法来提高结构的抗剪承载力。②针对二次转换梁而采取的措施,由于转换结构的竖向集中荷载导致结构受力变得愈加复杂,所以采取与第二种一样的方式,在梁端加腋,目的却是提高抗剪的安全性。③在结构构造设计的时候采取的,在梁内配置交叉斜筋,保证框支剪力墙洞口上部梁不出现强剪弱弯的情况,同时还确保了梁内塑性绞的出现。

5结束语

对于转换层结构设计提出以下几点建议,仅供参考。①在设计梁式转换层结构的时候,要深刻理解结构设计的理念并准确运用这些理念来解决设计结构上的一些难题,随后还要采用盐酸的方式对设计结果进行检验,确保结构设计的质量。另外,还要注意提高建筑物的防震性能,明确结构平面和竖向构件的布置,从而确保建筑物的安全性。②在对建筑物结构进行分析的时候,首先必须得掌握概念设计的思路,然后选择较为适用的平面有限元程序来对梁式转换层结构进行分析。③在设计转换层的时候,应尽量避免二次转换,因为一旦转换过多,截面分布较为复杂的次梁梁端很容易出现裂缝,从而导致建筑安全性能降低。

参考文献

[1]曾坤。某高层建筑混凝土转换层结构设计实例应用探讨[J].住宅与房地产,2015(19):162~163.

[2]林智雄。高层建筑混凝土梁式转换层结构设计探讨[J].科技与企业,(10):190.

[3]黄辉,王小红。高层建筑混凝土转换层结构设计原则及实践[J].工业,131.

[4]叶仲瓞。高层建筑混凝土结构转换层施工技术研究[J].四川水泥,(11):183.

我国高层建筑结构设计研究论文 8

我国高层建筑结构设计研究论文

摘要:随着现代化城市建设的快速发展, 城市高层建筑逐渐兴起。高层建筑在设计过程中, 结构设计一直是其关注的重点内容。所以, 为了保证高层建筑结构设计更科学, 本文章对高层建筑的结构设计中经常出现的问题实行了研究分析, 同时参照相关的文件与一些自己的想法指出了相对较好的处理方法, 以利于提升高层建筑的结构设计水平。

关键词:高层建筑; 结构设计; 相关问题; 解决措施;

1 引言

近些年, 在我国经济的持续性发展与城市建设步伐的加快过程中, 建筑一种正趋于高大化的形势发展。城市中高层建筑物数量在不断的增加, 建筑的结构也比较复杂。高层的建筑和低层的相比较, 前者的结构设计较繁琐, 影响的原因也较多, 不但需要对建筑的外型比例进行慎重思考, 还需要使建筑结构的稳固性得到保证, 同时还要考虑到建筑物地基的沉降问题、风力因素、温度的转变, 及地震等原因对建筑结构的危害与影响。

2 高层建筑的结构设计过程中时常发生的问题

高层建筑结构设计的合理性, 不仅能够明显地对施工过程造成影响, 同时还将影响到后续的维护与保养。因此, 在高层建筑的结构设计过程中对于时常遇到的问题以及相应的解决措施方法进行深入的探讨分析是十分有必要的。

2.1 扭转的问题

建筑的三个重“心”所指的是几何的形心、结构的重心、刚度的中心, 这三个重要的“心”相统一才可以确保建筑结构的牢固。但在现实当中地基础的形状、建筑功能的需要等的影响造成建筑的体型大多数原因下是不规范的, 设计过程中没有有效的做好三个重要的“心”相统一, 会导致建筑的结构发生扭转的现象, 造成结构的损坏。

2.2 抗风的相关问题

因为高层建筑其层数众多、高度较高, 风通过的时候, 较易出现空气动力的反应, 转变风在高层建筑面的。流动, 导致高层柔软的结构在风与空气的效应下产生震动, 对于高层建筑的结构与其构件的牢固性产生破坏。所以在对高层建筑的结构设计时实行抗风的结构设计, 让建筑结构的抗风力符合结构的牢固标准。然而在现实的设计当中由于没有科学的对高层建筑所能承载的风力进行评估, 导致高层建筑的抗风设计不合格。

2.3 抗震的问题

高层建筑在其结构的设计时, 对于抗震的设计是一个非常难的环节, 经常由于设计人员的专业性比较弱、灵活性不足, 对建筑抗震的规划不够重视。甚至在实施高层建筑的抗震核算的时候, 因为核算的错误使抗震的设计有效性降低。如果出现地震, 高层建筑的抗震结构将无法实现抗震的要求, 造成不同程度的损坏, 更严重的可能会导致人员的伤亡及经济财产的损失。

2.4 消防方面的问题

参照现在的有关规范制度, 高层建筑的结构一定要有科学适合的消防体系。然在高层建筑的结构设计当中却存有疏导困难大、火势较容易扩大、排烟的设计困难等相关的问题, 如果不能对这些问题进行有效的处理, 便不能确保高层建筑对于消防的安全。

3 高层建筑的结构设计所存在问题的处理方法

3.1 科学合理的设计建筑平面

如果高层建筑的结构发生扭转的现象, 主要的原因是高层建筑结构的几何形心、结构的重心、刚度的中心三心没有统一, 导致建筑的质量不平衡, 所以使结构的牢固性降低。所以在建筑的结构设计当中, 设计的相关人员需参照地基的形状与建筑的功能需要等科学有效的设计建筑物的体型, 最大程度的运用较规矩的型体, 例如方形或是圆形等, 科学的布置建筑的平面, 进而确保建筑质量的布局均衡。

3.2 科学地选取计算简图与结构方案

在实施高层建筑的结构设计核算的时候, 要在运算简图的情况下实行计算, 因此在选取计算简图时一定要合理的选取, 如果计算简图不规范, 很易导致结构的参数不正确, 给施工带来影响, 更严重的会造成事故的出现, 选取合适的计算简图是确保高层建筑的结构设计安全的基础。

3.3 合理地设计高层建筑的抗风构件

为了让高层建筑的抗风构件符合结构设计的牢固性需要, 在高层建筑的抗风设计当中需充分的做好下面几项工作:首先, 基础的改进, 高层建筑的基础结实, 上部分的结构才可以稳固。所以高层建筑的基础设计最根本的是明确所用混凝土的级配标准, 运用级配高的砂石是最佳的选择, 加大基础持力层厚度, 加置抗拔的锚杆构件, 提升建筑基础的牢固性;其次, 不同程度增加高层建筑的构件, 例如剪力墙、楼板等, 可抵消不同程度风能对结构造成的不利因素, 确保结构的牢固;最后, 最大程度的降减风力的水平负荷与风力相加对高层所造成的影响。

3.4 重视抗震的设计

在高层建筑的内部安装抗侧力的部件。合理科学的安置高层建筑内的水平走向的构件, 在水平走向产生应力的分布体系, 增强高层建筑的结构连续性。增强地基的抗震水平。加强高层建筑的桩基础深度, 和上部的结构产生联动性, 从而强化建筑结构抗震的水平。增设性能高的剪力墙等抗侧力构件。在高层建筑的结构内部加设墙体或是楼板的刚性, 以更好的管理好建筑位移的现象。

3.5 加强高层建筑消防结构的设计

可以利用下面的一些方法加强高层建筑的消防结构, 具体的方法:一是要参照建筑所在地形的环境有效的设计防火结构相互间的合理距离;二是要运用不容易燃烧的用材, 强化所用材料自身的耐火性能;三是要设计两个疏导的通道, 尽可能不把疏导通道设计为垂直的形式, 防止疏导的成效降低;四是要设计耐火的区域、防烟的区域等。五是设计隔离区域, 有利于防止火势的扩大与蔓延。

4 结束语

综合以上所论述, 本文章对于高层建筑的结构设计过程中的扭转、抗风性、抗地震性、消防方面等问题, 指出了相应的处理方法, 更深一层的健全了高层建筑的结构设计, 可以显着的提升高层建筑的结构安全性。伴随城镇化的深入发展, 城市当中高层的建筑数量将会逐渐的增长, 需持续的强化高层建筑的结构设计探讨, 不断的提高高层建筑的结构设计能力, 以适应时代快速的发展步伐。

参考文献

[1]罗晓清。高层建筑结构设计特点及常见问题分析[J].科技创新与应用, , 33:249.

[2]郭峰, 梁利生。高层建筑结构设计的问题及解决措施方案应用[J].科技传播 (13) :135~136.

[3]宋志瑜。建筑结构设计中常见问题与解决措施分析[J].城市建筑, (4) :66.

建筑结构设计中的抗震设计探微论文 9

建筑结构设计中的抗震设计探微论文

摘 要:现代高层建筑层数特别多,容积率特别大,若在地震中出现坍塌将带来很大的损害。所以做好建筑抗震设计具有特别关键的意义,因此需在设计时对其抗震特性进行重点关注与优化,在一定程度上的提升高层建筑的抗震特性。

关键词:建筑;结构;设计;抗震

抗震设计的基本原则为需符合大震不倒、中震可修、小震不坏的要求,针对于这一原则,需依抗震设计的两阶段来设计,依次为多遇地震下的状况与罕遇地震的状况,前者使用弹性反应谱法,后者使用抗倒塌弹塑性变形验算。对部分超越规范的高层建筑,能够使用基于结构性能的抗震设计理论来设计。

1 建筑抗震结构设计原则

1.1 关于结构的规则性。对于建筑防震结构设计,需先弄清楚建筑抗震结构设计的需求,在此基础之上,优化建筑平面和建筑物的应用性能,并对其进行适当的布局,对于高层建筑而言,务必要保证其具有足够的刚度,从而减小结构扭转的影响,对于建筑物来说需确保其平面均匀对称,建筑物的柱网剪力墙务必要科学布置。因为此类建筑结构可以很容易出现建筑物多地震的反应,对于建筑防震结构设计需对建筑进行适当布置,如此一来对于减小竖向构件间的差异形变和结构内应力对建筑结构的不利影响具有非常大的作用。

1.2 科学设计建筑刚度值。刚度值是建筑抗震机构设计的重点,设计者要对建筑的使用材料,建筑所在地的地理条件和施工设备的使用方式,利用自己掌握的抗震设计的物理知识,对建筑的刚度值进行设计。建筑的连接设计是设计者需要重视的内容,设计者要充分利用建筑的连接性,对建筑进行科学的防震处理,使建筑具备刚好的防震性能,并能够建筑承受一定的外部震动。

1.3 重视建筑防震结构连接点的性能。建筑抗震结构的设计人员要加强对抗震结构连接点的关注,统计表明,大多数建筑在因地震灾害而出现安全事故时,发生问题的位置大多位于防震结构的连接点上。建筑抗震结构的受力点,往往需要承受较大的力量,如果连接处的工作没有做好,建筑很有可能单地震灾害中坍塌,因此,设计人员要尤其关注抗震结构的连接点,使抗震结构具备更好的延展性,保证建筑不会因地震灾害而产生较大的破坏。

2 高层建筑抗震设计中常出现的`问题

2.1 建筑平面和竖向不规则。由于经济水平的提升和大家对流动的艺术的追求,建筑师创作的平面与立面日益复杂。进而平面与立面规则性超限的状况越日益普遍。这就促使建筑的抗震性能有很大的削弱。

2.2 地基的选取不科学。不同的地基类型对地震力的传递有不一样的特点,高层建筑因为垂直高度较高,自身重量较大,因此在选址时,对于土质的硬度、密实度与对地形的开阔和平坦性具有很高的要求,而且需远离河岸,防止抗震危险性路段,如此一来才可以保证高层建筑的基础具有较好的抗震性能,可以在地震力作用下具有非常好的承受能力。然而目前因为国内城市发展速度的加快,城市人口日益增加,很大一部分房地产开发商在进行高层建筑选址时均会更多的对其商业利益与商业开发空间进行考虑,这就造成高层建筑地基在选取上具有特别多的适宜性与不科学性,进而使其抗震性能降低,在地震发生时高层建筑的基础破坏更加严重。

2.3 材料的选取不科学。这几年,国内地震出现的次数特别多,因此在对地震频发区域进行高层建筑设计时,务必保证其结构体系的科学性性,另外还需适当选择结构材料。然而由于施工、经济等因素,轻质高强材料并未适当的采用。

2.4 抗震设防烈度较低。由于我国的经济发达程度还不够高,现在国内的建筑的抗震设防烈度不高,中震和规定的设计基准期内超越概率大约为10%的地震烈度相似,较低的抗震设防烈度减小了高层建筑的抗震需求。

3 高层建筑结构抗震设计的优化措施

若想设计出具有特别好的抗震性能的建筑需要从结构概念设计与构件设计两个角度着手。抗震概念设计对结构的抗震功能具有很大的作用,所以新规范都在有关条文中提出了建筑和结构概念设计的关键性,还要求建筑师与结构工程师在高层建筑设计中需特别关注建筑结构设计中的概念设计。

结构构件抗震的优化原则,就是“四强四弱”“强柱弱梁”,指节点处柱端实际受弯承载力超过梁端实际受弯承载力;“强剪弱弯”为避免构件剪切的破坏,对于杆件的受剪承载力最好大于受弯承载力;“强节点弱杆件”为避免节点比构件破坏的早;对杆件截面来说,“强压弱拉”为防止杆件由于弯曲而出现受压混凝土破裂的脆性破坏,让受拉区钢筋的承载力小于受压区混凝土受压承载力,具体的能够从以下几点来考虑。

3.1 选择有利的抗震场地。由于地质条件的不同地震对建筑设施的破坏具有很大的差异。在施工前要勘察好地基状况,保证建筑场地有助于建筑设施的抗震,应尽量不在抗震不利地段建设建筑构,在不能避开时,需采用恰当的措施提升抗震性能。根据建筑场地地基地质特征与受地震破坏作用的强弱来进行分类,依据建筑场地的实际状况适当采取抗震措施,比方说依据地基地质抗震设防种类、地基液化等级等实际状况科学采用适当的基础形式。

3.2 选用合理的结构体系。

3.2.1 优化平面和立面设计。结构的简单性,就是尽可能地均匀、对称。结构简单为结构在地震之力下具有直接与清晰的传力方式。对于简单的结构,可以简单地把握建筑结构的计算模型、内力位移分析以及结构薄弱部位,进而对结构的抗震功能也具有良好的估计。

3.2.2 提高结构的刚度和抗震能力。水平地震是双向的,对于建筑结构设计需让高层建筑可以抵抗任意方向的地震破坏。一般设计能够让结构沿平面上两个主轴方向具有充足的刚度与抗震性能,结构的抗震性能就是结构强度和延伸的反映。结构刚度的选择不但可以减轻地震破坏作用,还需注意控制结构形变的增幅,太大的形变将出现重力二阶效应,造成结构破坏、失稳。

3.2.3 设置完善的抗震措施。抗震建筑结构体系需全方位考虑到建筑物的设防烈度、场地、地基、材料以及施工等因素,通过技术、经济技术、经济条件综合考虑进行确定。首先需多设几道抗震防线,进而防止由于部分结构或构件破坏而造成一个高层建筑结构体系不具备抗震性能。适当的刚度与强度分布,将防止由于局部消弱、突变性、太大的应力集中可能出现的薄弱部位。

3.3 选用合适的建筑材料。科学选用高层建结构材料对提升建筑设施的抗震性能是非常有利的。就抗震设计方面来讲对建筑工程用到材料参数展开合理分析,选择适合高层建筑抗震条件的工程材料。尽可能使用高性能混凝土和高强钢筋及别的高强轻质的材料,用来提升构件内力及抗震能力。

4 结语

随着高层建筑技术的持续发展,它的抗震设计水平也在提高,高层建筑抗震设计的措施也是变得越来越科学及合理,外加上多种多样的新技术和新材料的出现,高层建筑抗震能力一直在提高,很好的提升了地震出现时建筑的安全性能。

参考文献

[1] 赵建荣。建筑结构抗震设计若干问题的探究[J].科技创新导报, (06):45.

[2] 王海翠。我国高层建筑抗震结构设计初探[J].科技传播,(10):29,41.

建筑抗震设计探讨论文 10

一、影响砖混结构抗艇性能的因素在砖混结构中,主要有以下几个方面的因素会影响到建筑结构的的抗震性能和抗震设计质量:

1.建筑设计应当满足抗震设计的要求,尽量采用比较规则的设计方案,如果确实需要采用不规则的设计方案,应当将平面或者结构不规则的建筑分为若干个相对比较规则的建筑单元,在建筑中的关键部位设置防震缝。在设计中既要考虑到建筑物的使用功能,也要满足建筑的结构造型,同时也要提高工程的抗震能力。砖混结构的设计应当按照要求确定建筑的高度和层数,对于砖混结构来说,高度越高,层数越多,在发生地震时产生的破坏力也就越强。砖混结构中,楼盖的重量占到了房屋总重的一半,在建筑高度相同的情况,如果建筑层数比较多,就增加了建筑物半层楼的重量,增大了建筑物的应力,也增大了建筑底部的力矩,在地震比较强烈的时候,建筑物就有可能因为力矩过大,使建筑底层的墙

2.对于砖混结构来说,其空间是一个具有一定刚度体系的结构,抗震能力的大小取决于建筑结构的整体刚度和稳定性,其中具有高强度的楼盖和楼板可以有效的传递地震时的应力,为分配地震作用提供良好的条件。砖混结构中的承载结构主要是其横、纵墙体,合理的布置横、纵墙体可以有效的提高建筑设计的抗震的质量。对于层数比较多的砖混建筑物,可以考虑横墙承重或者纵横墙体共同承重的结构,建筑物的横纵墙体的布置应当尽量的对称,墙体的尺度和宽度结构都应当做到均匀,减少因为墙体自己内部的应力,增大墙体抵抗外界拉力和剪力的作用。当建筑设计中只采用横墙承重或者纵墙承重时,由于墙体在非承重结构方向上受到的约束比较少,而且之间的距离比较大,造成建筑物在非承重结构方向的刚度比较小,降低了建筑物的整体刚度和稳定性,抗震能力比较低,在地震容易频发的地区,墙 如果能够在墙体承重结构方向和非承重方向合理的布置墙体的承重结构,可以有效的限制和减少在非承重结构方向的变形和应力,提高了建筑物的刚度和稳定性,增大了建筑结构的抗拉、抗剪能力,可以有效的承受地震的作用。

3.砖混结构中建筑物的墙体面积和砂浆强度也会影响到其抗震的质量。在砖混结构的建筑中,砖墙不仅是建筑的沉重结构,也是建筑的水平抗震结构,对于砖混结构来说料砖和砂都是相对比较脆性的材料,抗拉能力比较弱,导致其抗震性能比较差,在地震比较高的情况下,就会发生破坏效应。对于多层建筑物来说,在一般的抗震计算时的高层结构中其受到的地震作用比较小,,可以知道在最上面于建筑物下面的一、二层来说,建筑物中抗震比较薄弱的环节,可以满足抗震要求,对情况,可以考虑增大墙体的宽度,也就是增大墙体的受力面积,还可以提高砂浆的强度,通过计算可以知道。能够达到抗震的刚度要求。在砖混结构的底层建筑物中设计时,要适当的增大墙体的面积和提高砂浆的墙体,可以提高建筑物的抗震性能。

二、提高砖混结构抗震设计的措施为了有效的提高砖混结构的。抗震质量,可以采取以下设计方面的措施:

1.增加构造柱。构造柱可以增大墙体的变形能力,使建筑结构在遭受地震时,不容易受到明显的破坏,使建筑结构有一定的抗变形性能,降低了建筑物倒塌的可能性。构造柱是一种约束砌体的竖向结构,一般在沿着墙体的高度而横截面不变,设置在墙体的和墙体的交接处或者墙体的边端,可以有效的提高墙体的抗剪切应力。在地震的初期,构造柱承受的应力比较小冈。当地震比较强烈时,造成的破坏比较严重时,墙体破裂时,构造柱的承受的应力逐渐增大,当墙体的裂缝贯穿墙体时,构造柱开始明显的承受内力。墙体虽然破裂,但是由于构造柱的作用而不出现倒塌的现象。构造柱的设置应当和建筑物的结构相配合,当构造柱的结构比较大的时候容易在地艇时承受较大的应力,使构造柱先于墙体而破坏,这样就不能有效的发挥其作用,而且还降低了其抗震的质量。

2.增加圈梁结构。圈梁不仅可以在地震发生时有效的保护墙体的免于破坏,而且还提高了整个建筑物的稳定性。圈梁主要是和构造柱产生拉结的作用,从而从各个方向上对墙体产生约束的作用,可以有效的减少在地震发生时裂缝在水平面上的夹角,防止出现大裂缝的现象,增强墙体的刚度。圈梁还增加了建筑物内外墙和墙体和楼板之间的连接,在发生地震时,可以承受和传递其它结构所遭受的应力,降低建筑结构的内力,降低了地震时地表裂缝对建筑结构的影响。

3.士曾加伸缩缝。在砖混结构中由于砌体材料和钢筋混凝土材料的膨胀系数不同,导致了墙体和屋盖的之间的刚度也不相同,当外界的温度发生变化时,砌体材料和钢筋混凝土材料由于材料本身的性质而产生不同的变形。这种因为温度变化而建筑结构产生不同的变形,导致温度应力的出现,特别是对于温差变化比较大的地区,这种影响更加明显。当墙体中的应力超过了砌体中的抗剪或者抗拉强度时,就导致墙体产生水平裂缝或者竖向裂缝,在建筑物的顶层结构 这种裂缝主要表现在纵横墙的包角裂缝、横墙上端的八字缝,屋盖和墙体之间的水平裂缝、纵墙的八字缝、墙体中的滚筒裂缝等,为了减少因为温度应力而产生的裂缝现象,可以在墙体结构中可能产生裂缝的地方设置伸缩缝,一般设置在建筑物的结构变化或者平面转折的地方,以及错层或者建筑结构中的中间圈。在实践中可以发现,通过设置伸缩缝可以有效的防止或者降低裂缝的出现,是砖混结构的抗震设计中的一项重要的技术方法。还可以在屋盖中设置隔热材料或者保温材料,在墙体和屋面中设置滑动层等方法,防止温度变化导致的裂缝。在多层砖混结构的建筑物中,难以满足抗震设计的要求。在这种情况下,为了提高墙体的抗震能力,可以在抗震刚度比较小的承重墙中增加水平钢筋,增加砌体和水平方向的刚度。通过研究表明,增加承重墙的配筋可以有效的提高砖混结构建筑物的抗震质量。

三、结束语

砖混结构作为建筑结构中常用的结构,具有非常突出的优点,但是其结构的整体性能比较差,抗震能力不足,因此应当加强砖混结构的抗震性能设计,最大限度的降低砖混结构在地震中的破坏程度,保护人民的生命财产安全。在砖混结构的建筑中,应当做好建筑结构的合理布局,提高采取各种措施增强砖混建筑的抗震质量,满足建筑物的抗震要求。在砖混结构的抗震设计中应当体现预防为主的设计理念,在满足经济和安全的前提下,能力提高建筑物的抗震能力。

多层砌体结构房屋震害调查 11

多层砌体结构房屋震害调查

赴5.12汶川地震灾区,分别对绵竹、汉旺、都江堰、汶川、映秀等地进行了实地调查,全面了解多层砌体结构的。震害现象,并针对多层砌体结构在水平地震作用下窗下墙的交叉裂缝提出新的研究方法。

作 者:张璇 郑军鹏 张霄  作者单位:张璇,郑军鹏(西安建筑科技大学土木工程学院,陕西,西安,710055)

张霄(西安三建建设有限公司,陕西,西安,710054)

刊 名:现代商贸工业 英文刊名:MODERN BUSINESS TRADE INDUSTRY 年,卷(期):2010 22(12) 分类号:X9 关键词:交叉裂缝   窗下墙   力学分析   延性破坏模式

建筑抗震设计探讨论文 12

一、民用建筑的防君

目前国内民用建筑有砌体、框架、砖木以及钢结构,这四种是最常见的建筑结构形式,以下便一一的对其结构形式特点和防震性加以介绍。

1、具砌体结构的民用建筑

这种结构是国内目前最常见的民用建筑形式,其具量大面广特点,因而不管是农村还是城镇的房屋几乎全是砌体结构,3一7层较常见。有少数砌体房屋由于带有钢筋混凝土墙、梁和柱,从而组成了有内部、底层框架的房屋。这种结构的建筑有很多小开房间,因而内墙较多,因而其侧部具一定的抗力性,但因砌体结构一般用的是脆性材料,因而在受力后韧性小很易断裂,因而在地震时更易引起倒砸危险,严重的在跨度较大的墙体易出现局部倒塌。

2、具钢结构的民用建筑

刚结构的民用建筑具自重轻、整体结构重量轻和强度高的优点,因而在当前现代社会中有些建筑就采用的是这种结构形式。其由于是含钢体,所以住宅塑性与延展性较好,抗震能力突出,一些地震高发地带一般就采用这种结构形式,其可以在低烈地震下可以免受破坏。但因成本较高,不耐火,因而被应用的不是特别广泛。

3、具框架结构的民用建筑

所谓框架结构,顾名思义,其建筑框架轮廓较为刚硬明显,其柱和梁等部分用的是钢或铰连接,作为主要承重部分。此结构较省材料,自重也较轻,分隔空间较灵活,具备一定的抗震性能。框剪结构形式是结合剪力结构与框架结构结构形式,在框架结构的水平构造上增加了部分剪力墙,如此以来吸取了各自优点,在拥有较大空间的同时兼可增强其侧部抵抗力,这种结构形式对地震产生的水平力耐地震效果较为明显。

4、具砖木结构的民用建筑

所谓砖木结构是指主要承重部分如柱和墙等时由砌块或者砖铸造的,而屋架和楼板的你跟用的是木质材料。这种结构形式我们会在偏远的农村经常见到,其费用低,结构和材料简单。但这种结构在连接处不牢固,抗震能力差,一般六七度的'地震即可全盘摧毁。

二、民用住宅建筑的抗震要具备的基本要求

地震发生时对建筑的破坏是无规律而又复杂的,自20世纪70年代,有人提出了“建筑抗震概念设计”。这里“建筑抗震概念设计”是指根据地震灾害和工程经验等所形成的基本设计原则和设计思想,进行建筑和结构总体布置并确定细部构造的过程。这个设计原则强调了抗震概念设计的重要性,在泣川地震中,房屋建筑的破坏大都是由于不合理的结构设计和施工。因而,在抗震设计施工中要遵循如下原则:

1、地基的选择。许多村镇建筑多数不搞地质勘探,而是凭借经验选择建筑物地基,存在必要的岩土勘测资料或资料不全的问题,因此软弱下卧层的具体位置及范围很难确定,相应的基础加牢的位置及范围多是凭借经验处理,导致楼房出现不均匀沉降,墙面开裂等问题。《房屋抗震设计标准》规定:选择建筑场地时,应根据工程需要,掌握地震活动情况、工程地质和地震地质的有关资料,作出综合评价。宜选择对抗震有利地段,避开不利地段,无法避开时,应采取有效措施;不应在危险地段建造甲、乙、丙类建筑。

2、平面的设计。建筑的平面布置尽可能设计成规则的多边形,尽可能对称,不设置凸起部分或凹进部分,楼梯间也尽可能对称布置。

3、选择经济合理的结构形式。一个结构单元应采用同种结构体系,刚度布置需均匀。汉川地震时有一处别墅的破坏就是因为底层结构采用了一半采用砖墙落地承重,一半采用钢筋混凝土承重,造成平面刚度和竖向刚度都发生突变,地震来临时受力不均产生不均匀沉降导致结构的破坏。

4、提高施工质量,杜绝偷工减料、以次充好的现象。

5、多道设防。根据建筑物所在地区的抗震设防烈度设置两道以上的防线,以限制地震作用的破坏,使建筑物达到“小震不坏,中震可修,大震不倒”的三级水准抗震设防目标。

三、结语

本文对地震的灾害做了简单论述,介绍了常见建筑的几种结构特点和防震情况,阐述了要建设民用建筑的防震所需满足的最基本的要求,希望建筑设计能够重视建筑防震设计的重要性,力求具高度责任心建设设计出具严格规范的高质量建筑,提高人们居住环境的安全性。

超高层建筑结构抗震设计论文 13

1超高层建筑

超高层建筑高度要求与结构类型和抗震烈度密不可分,超高层结构设计要进行两种方法以上的抗震核算,并且进行抗震设防专项审查。世界超高层建筑有迪拜哈利法塔,高828m;广州塔,高600m、上海环球金融中心,高492m等。超高层建筑因其超高的高度而具有不同于普通建筑和高层建筑的特点。首先,对于超高层建筑,传统的砖、石等材料已难以适用,其结构类型也更具选择多样性,如钢筋混凝土结构、全钢结构和混合结构等。其次,超高层建筑的垂直交通与消防,由于其超高的高度,较依赖于垂直交通,同时也给消防增加了困难,这就要求超高层建筑的每一层都需设置灵敏的烟雾报警器、自动喷淋和适当的避难所。最后,超高层建筑通过对风作用效应、重力荷载作用效应、施工过程的影响、空间整体工作计算、结构整体内力与位移、抗震性能等设计计算分析,进而提高超高层的抗震性和安全性。

2超高层建筑结构抗侧刚度设计与控制

为了提高超高层建筑的抗震性,其足够的结构侧向刚度必不可少。足够的结构侧向刚度不仅可以保障建筑物的安全性、抗震性,还可在一定程度上有效抵抗建筑结构构件的不利受力情况及极限承载力下的安全稳定性。设计超高层建筑的结构抗震侧向刚度,应重点从其结构体系和刚度需求进行。

2.1结构设计。结构初步设计根据建筑高度和抗震烈度确定高度级别和防火级别。超高层结构设计首先满足规范要求的高宽比限值和平面凹凸尺寸比值限值,其次控制扭转不规则发生:在考虑偶然偏心影响的规定水平地震力作用下,扭转位移比不大于1.4;最大层间位移角不大于规范限值的0.4倍时,扭转位移比不大于1.6;混凝土结构扭转周期比不大于0.9,混合结构及复杂结构扭转周期比大于0.85。最后设计过程中严格控制偏心、楼板不连续、刚度突变、尺寸突变、承载力突变、刚度突变等现象。满足结构设计规范的同时,还应考虑建筑师的设计意图和功能需求,同时满足设备专业设计要求。结构平面的规整程度直接影响着抗震设计的强弱,尽量采用筒体结构,以使得承受倾覆弯矩的结构构件呈现为轴压状态,且其中的竖向构件应最大程度的安置在建筑结构的外侧。各竖向构件和连接构件的受力合理、传力明确,降低剪力滞后效应,杜绝抗震薄弱层产生。

2.2结构侧向刚度控制。超高层建筑的抗震性能设计主要与结构侧向刚度的最大层间位移角和最小剪力限制相关。对于层间位移角限值,其是衡量建筑抗震性的刚度指标之一,地震作用应使得建筑主体结构具有基本的弹性,保证结构的竖向和水平构件的开裂不会过大。同时,因超高层建筑的底部楼层、伸臂加强层等特殊区域的弯曲变形难以起主导作用,所以应采取剪切层间位移或有害层间位移对其变形进行详细的分析与判断。对于最小地震剪力,其最重要的两个影响因素是建筑结构的刚度和质量,当超高层建筑难以达到最小地震剪力要求时,设计人员应该结合具体情况适度的增加设计内力,提高其抗震能力和稳定性,然而,当不能满足最小地震剪力时,还需通过重新设计或调整建筑结构的具体布置或提高刚度来提高建筑物在地震作用下的`安全性,而非单纯增高地震力的调整系数。

3超高层建筑的性能化抗震设计

超高层建筑的抗震性能设计,国内主要根据“三个水准,两个阶段”,即“小震不坏、中震可修、大震不倒”。超高层建筑来说,其建筑工程复杂、高度极高、面积大、成本高,一旦受到地震损害,其损失程度会更高,因此,必须充分考虑各方理论、实际情况和专家意见,兼顾经济、安全原则,定量化的展开超高层建筑的性能化抗震设计。同时,相关文件虽针对超高层建筑结构的性能化设计制定了较具体且系统的指导理念,涉及宏观与微观两个层面。但是,由于结构构件会受到损坏,且损坏与整体形变情况的分析计算都需进行专业的弹塑性静力或动力时程计算,而目前我国尚未形成相关的定量化的评价体系,因此,设计人员应在积极参考ATC-40和FEMA273/274等规范。此外,对于弯曲变形为主导的建筑结构,在大震作用后应尤其注重构件承载力的复核。

4超高层建筑多道设防抗震设计

除了上述注意事项外,针对超高层建筑进行抗震性设计时,还因注重设计多道的抗震防线。多道抗震防线是指一个由一些相对独立的自成抗侧力体系的部分共同组成的抗震结构系统,各部分相互协同、相互配合,一同工作。当遭遇地震时,若第一道防线的抗侧移构件受到损害,其后的第二道和第三道防线的抗侧力构件即会进行内力的重新调整和分布,以抵御余震,保护建筑物。目前,我国超高层建筑主要依靠内筒和外框的协同工作来达到提供抗侧刚度的目的,包含两种受力状态:首先,建筑的内外结构通过楼板和伸臂析架来协调作用,进而使得外部结构承受了较多的倾覆弯矩和较少的剪力,而内筒则承受了较大的剪力和一些倾覆弯矩,广州东塔就是此受力方式的典型;其次,以交叉网格筒或巨型支撑框架为代表的建筑外部结构,其十分强大,依靠楼板的面内刚度,外部结构即可同时承受较大的倾覆弯矩和剪力,如广州西塔。

5结语

综上所述,超高层建筑的抗震性能不仅关乎着建筑工程的投资,还威胁着人们的生命财产安全,因此,设计单位和相关工作人员必须树立正确的观念,积极学习并引进国内外的先进理念和设计,不断提升自身的设计水平,为促进超高层建筑的发展奠定基础。

无粘结预应力混凝土平板结构设计研究论文 14

无粘结预应力混凝土平板结构设计研究论文

摘 要:无粘结预应力混凝土平板结构适用于中等地震烈度区的双向柱网,其设计一般采用荷载平衡法来进行设计,对预应力混凝土平板的设计中的截面尺寸的选择、预应力筋的估算、次内力与荷载效应组合这三个方面进行了探讨。

关键词:预应力;混凝土;平板设计

1 引言

无粘结预应力混凝土结构是在一个方向或两个方向配置主要受力无粘结预应力筋的结构体系。施工时,无粘结预应力筋同非预应力筋一样,按设计要求铺放在模板上,然后浇筑混凝土,待混凝土达到设计强度后,再张拉锚固。此时,无粘结预应力筋与混凝土不直接接触,呈无粘结状态。在外荷载作用下,预应力在纵向可以相对周围混凝土发生纵向滑动,但在总变形上存在者变形协调关系,该结构一般也需要配置普通钢筋以改善结构的受力性能,避免结构在极限状态下出现集中裂缝而发生脆性破坏。其优点是:

(1)结构自重轻,提供满足大空间的功能要求,符合较高的使用功能的要求。

(2)施工简便、速度快。无次梁,有利于采用定型摸板,节约模板。

(3)抗腐蚀性能强。预应力筋外包涂有防腐油脂塑料套管。

(4)使用性能好。在使用荷载作用下,抗裂和挠度要求易于控制。

(5)抗震性能较好。在地震作用下,当产生大幅度的反复位移时,无粘结预应力筋始终处于受拉状态,不像有粘结可能由受拉转为受压。应力幅度变化较小,局部变形也以均匀分散到全长上。

2 截面尺寸选择

在初步设计阶段,为控制挠度通常可按跨高比得出板的最小厚度,一般由跨高比的正常取值范围,求得的板厚可满足结构性能要求,所建成的后张楼板也是经济的。但在平板结构中,由于柱支撑着双向板,柱边存在着很高的剪应力,可能产生冲切或冲剪破坏。此时,围绕柱出现斜裂缝,破坏面从柱边处的板底斜向伸展至板顶,成圆锥面或凌锥面的“冲切破坏锥”。斜裂缝与水平线的倾角取决于板的配筋和预应力的大小,一般在20°―45°之间。因此,在设计中应验算所选板厚是否有足够的抗冲切能力。

依据国内关于无附加钢筋的单柱预应力平柱的试验结果,通常假定板的冲切破坏锥体与板底面成45°角,在冲切承载力计算中取冲切破坏锥体斜面的上下边长的平均值,即距荷载边k/2处的周长作为计算周长。我国《无粘结预应力混凝土结构技术规程》(JGJ/T 92-93)中给出了平板节点抗冲切承载力的计算公式如下:

F1≤(0.6f1+0.15σpe)μmh0(1)

式中:F1为集中反力设计值,即柱所承受的轴向力设计值减去柱顶冲切破坏锥体范围内的荷载设计值;f1为混凝土抗拉设计强度;σpe为由预应力筋的有效预应力产生的混凝土平均预压应力,当两个方向预压应力值不同时,取其加权平均值;μm为冲切计算周长,一般取距集中反力作用面积周边h0/2处的周长;h0为平板的截面有效高度。

从式(1)可求出满足抗冲切承载能力需求的'最小板厚。

需要指出的是,上述公式未考虑传递节点不平衡弯矩,若考虑传递节点不平衡弯矩,则平板节点的抗冲切承载力计算较为复杂,在初步设计阶段可采用将竖向荷载剪力乘以适当的放大系数来近似考虑传递不平衡弯矩的影响,对中柱该放大系数可取1.2,边柱取1.5,角柱取2.0。

3 预应力筋估算

3.1 预应力筋的线型

(1)计算预应力筋线型。

按照荷载平衡法原理,结构中预应力的作用可用等效荷载代替,等效荷载的分布形式可设计为与外荷载的分布形式相同、方向相反、数值相当。若外荷载为均布荷载,则预应力束的计算线形可取抛物线形,当外荷载为集中荷载时,则预应力束的计算线形可取折线形,若外荷载在同一跨内既有均布荷载,又有集中荷载作用,则该跨预应力束的计算线形可取抛物线与折线的结合。

(2)实际预应力筋线型。

在预应力混凝土平板结构中,采用荷载平衡法设计得到的预应力筋线形在中间支座处有尖角,而在实际的布筋中,预应力筋是由一系列正反抛物线组成,在最大偏心处,相邻两段抛物线相切,且斜率为零,因此其连接是光滑的。根据这个几何关系条件可确定出实际的预应力筋线形。

3.2 预应力筋的估计

对预应力筋的估计,通常都采用避开次内力计算的荷载平衡法来进行设计,荷载平衡法由林同炎教授于1963年提出,该法大大简化了超静定预应力结构的设计计算,其基本原理如下:结构上预应力的作用可用等效荷载代替,等效荷载的分布形式可设计为与外荷载的分布形式相同、方向相反、数值相当。

应用荷载平衡法设计时,一个关键问题是怎样合理地选择平衡荷载,亦即预应力应该平衡掉多大的荷载。预应力平板结构的配筋设计同样必须满足规范规定的承载能力极限状态及正常使用极限状态的要求,即需验算承载力、变形、裂缝控制要求以及施工阶段的应力。在实际设计中变形主要由结构的跨高比控制,裂缝控制则主要由预应力筋的数量控制。当按裂缝控制要求配置的预应力筋量不满足承载力要求时,可通过增配非预应力钢筋予以满足。既然预应力筋的数量实际上是由裂缝控制要求确定的,所以平衡荷载应按结构的裂缝控制等级合理选取。其基本原则是:对一、二级裂缝控制等级的结构,当准永久荷载系数较大时,一般可取永久荷载(即恒载)和准永久荷载的一部分(30%―70%)作为平衡荷载。可变荷载比例较大时,可取较大值;可变荷载比例不大时,可取较小值。对于三级裂缝控制等级的结构,预应力筋的配置可有正截面承载力计算确定,其中预应力筋所承担的承载力一般不大于总承载力的75%。

4 次内力与荷载效应组合

4.1 次内力

在预应力超静定结构中,预加应力使构件产生的变形将受到多余约束的限制,从而产生附加内力,超静定结构中由于施加预应力引起的附加内力,我们称之为预应力次内力,预应力次内力包括预应力次剪力、预应力次弯力和预应力次轴力等,一般对结构两类极限状态有重要影响的是预应力次弯矩,所以在预应力平板结构设计中我们只考虑预应力次弯矩。预加应力在超静定结构内产生的总内力为主内力与次内力之和,称之为综合弯矩,由此预应力次弯矩可由下式求得:

M2=Np-M1(2)

M1=Mpep(3)

式中,Mp为预应力弯矩;M1为预弯力主弯矩;M2为预应力次弯矩;Np为预应力钢筋及非预应力钢筋的合力;ep为净截面重心至预应力及非预应力钢筋合力点的距离。

4.2 荷载效应组合

预应力平板结构与其它超静定预应力结构一样,荷载组合的关键是在结构两类极限状态设计中如何考虑预应力次弯矩的问题。国内外许多规范都有具体的规定,如美国《钢筋混凝土房屋建筑规范》(ACI 1992年公制修订版)规定:在使用荷载条件下,预应力超静定结构的内力按弹性方法确定,结构内力中应包括预应力次弯矩,在承载力计算时仍应考虑预应力次变弯矩,此时预应力次弯矩须考虑内力重分布的影响。我国《预应力混凝土结构技术规程》(JGJ/T92-93)中规定,预应力次弯矩一直存在并保持不变,因此在承载能力极限状态设计中以及在正常使用极限状态时均应考虑预应力次弯矩的影响。

参考文献

[1]@薛伟辰。现代预应力结构设计[M].北京:中国建筑工业出版社,.

[2]@混凝土结构设计规范(GB50010-)[C].北京:中国建筑工业出版社,.

[3]@无粘结预应力混凝土结构技术规程(JGJ/T92-93)[S].北京:中国建筑工业出版社,1992.